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EQUATIONS OF HYDRODYNAMICS FOR POROUS MEDIA WITH A 

VOID STRUCTURE POSSESSING FRACTAL GEOMETRY 

Ao V~ Mal'shakov UDC 532.546 

We obtain the equations of filtration for the case when a void space is a fractal 
embedded in a continuous medium. We consider a model of capillary permeation of 
porous materials with percolation properties~ 

Introduction~ In recent years the theory of fractals, i~ objects with a fractional 
spatial dimensionality [1-4], has been widely used to describe the structure of disordered 
media and processes in disordered media. Examples of disordered materials are porous bod- 
ies such as rocks~ The void space, the skeleton, or the surface of the body can be a 
fractal [5, 6]o 

It was shown in [7, 8] that certain features of the behavior of processes in porous 
media are determined by the percolation properties of the void space of rocks. It is known 
(see [9], for example) that a percolation cluster has fractal properties. Hence it follows 
that the void space of sedimentary rocks has fractal properties, which is observed experi- 
mentally [i0]. 

I. Multiphase Filtration~ We first consider the equations of multiphase filtration for 
the case when one phase (the wetting phase, for example) extrudes the other (nonwetting) 
phase. 

We assume that the void space is a fractal with the Hausdorff-Besikovitch dimensional- 
ity df embedded in a continuous medium with dimensionality d (d > df, d = 2, 3). 

To derive the eo~uations we adopt the method used in [ii] to derive the equations of 
filtration in a fractured medium with the cracks having a fractal geometry. 

We consider flow with cylindrical (d = 2) or spherical (d = 3) symmetry, when all func- 
tions depend only on the time t and the distance r from the center of symmetry. Then the 
integral conservation of mass equation is written in the form 

0 .f mp~Swd~p = I qfd~ , - -  i qfd~,, (I) 
Ot r~ rLro ' df  df  . . . .  

where dlap = drdla s . 

Below we will need the relation 
d/ d: 

d - - I  

where ~df = 2~df:iF-1(df/2) is the surface area of a unit (df - 1)-dimensional sphere. 

Using (2), we rewrite (i) in the form 

OSw 1 0 
mpw O----t--= re: -1 Or [re:-l ql" (3) 

Combining (3) wi th  the  equa t ion  of  t he  g e n e r a l i z e d  Darcy ' s  law 

k (~) 
u~ - : i  ( ~ )  Vm,  
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and with the following expression for the pressure difference in the phases 

p~ - -  p~ = po ! (Sw)  

and using the condition that the total filtration velocity is constant 

ul + u~ = u (t) = const, 

we obtain the Rappoport-Leese equation for a porous medium with fractal properties 

OSw + r ~t-~u __O [r~S-~F (Swj] k__ I O [ raf_~q)(~%,) OO_~r ] 
m Ot Or ~2 /:-~ Or 

( s )  

( 6 )  

(7)  

(s~ = - fl (s@ h (sj p~(S~) = h (s) P (s 0 p~ (sj; 
h (so + ~t~ (sj  

F(Sw) =fl(Sw)/[fz(S w) + ~0f2(Sw)] is the flux distribution function and ~0 = 0~/~2 is the 
ratio of the viscosities of the wetting (water) and nonwetting (oil) phases. 

2. Dynamics of Impurities in a Homogeneous Liquid. The total impurity flux q in the 
porous medium is composed of the convection and diffusion fluxes [12]: 

Oc 
q=cgwu--D,, Or ' (8)  

where c is the concentration of impurities in the aqueous phase, D u is the convective dif- 
fusion coefficient, and u is the velocity of convective flow. 

Using (1)-(3) and (8), we obtain the equation of motion of the impurities in a homoge- 
neous liquid (Pw = I) 

Oc u I 0 [ra1_,c] - D~ 1 0 [ ~ ] 
O----F+-- raf-1 -- rd/_ ~ r at-t . m Or m Or Or'- ( 9 )  

Phenomena associated with adsorption can be taken into account in (9) without difficulty. 

3. Model of Capillary Permeation of Porous Materials with Percolation Properties. The 
effect of capillary forces on extrusion is crucial in many situations of interest in the 
petroleum industry (inhomogeneous and fractured strata). 

The process of backflow capillary permeation is described by (7) with the total flow 
velocity u equal to zero: 

as~, ~ 1 a Ir,-,~(s~ as~ ] 
m O--t---- ~2 rdI-" a'--r-- T r  J" ( lO) 

This is a quasilinear equation of the parabolic type. Equations of this type occur in 
mathematical models of diverse phenomena and processes in mechanics, physics, technology, 
biophysics, biology, ecology, and many other fields [13]. 

It is known [14] that equations of the type (I0) where the function ~(Ss) decreases and 
approaches zero as S w + 0 describe a process with a finite velocity of propagation of dis- 
turbances (at each instant of time the disturbance will extend out only over a finite region 
of space). 

The initial and boundary conditions for (i0) are 

Sw(r, O) : Swres~ w (0, / ) =  S~es ;Sw(r f  t,) : S~res, (11)  

where Sw* is the maximum value of the saturation of the porous sample by water and rf is 
the coordinate of the permeation front. 

In recent years percolation ideas [15-18] have often been used to explain processes in 
porous media when one liquid is extruded by another. In particular, percolation ideas make 
it possible to explain in a consistent way the typical features of processes in porous media 
observed experimentally. It was shown in [7, 8] that certain features of the behavior of 
processes in rocks are determined by the percolation properties of the void space of the rock. 

The process of extrusion of one phase by another can be represented as the formation of 
an infinite cluster of saturated (by the wetting or nonwetting phase) pores. It is neces- 
sary to distinguish two situations: 

i) the saturation S w of the porous medium by the wetting phase is large (or the satura- 
tion Sp by the nonwetting phase is small). Then we have the formation of an infinite clus- 
ter of pores saturated by the nonwetting phase (an "oil" infinite cluster) [16]; 
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2) when S w is small (or Sn is large) we have the formation of a "water" infinite 
cluster. 

We first consider the formation of an oil infinite cluster. It is known that the prob- 
lem of extrusion by mercury introduced into the sample and extrusion of water by air in the 
semipermeable membrane method can be formulated in terms of percolation theory. In this 
case initially the filtration of the nonwetting phase will be equivalent to the formation 
of an infinite cluster of filtering pores in the sample [16, 19]. An infinite cluster exists 
when P0 > P0c, and the volume fraction of the nonwetting phase near the percolation threshold, 
i.e., for small Ap0 = P0 - P0c > 0 will have the asymptotic behavior 

Sp --- (a~o)~, (12) 
where ~ is the critical index for the probability that a filled pore belongs to the infinite 
cluster; P0c is the breakdown pressure (the percolation threshold). 

Because.of the percolation properties of the void space of the porous medium one can use 
the scaling invariance hypothesis, according to which the geometry of the percolation system, 
including the structure of the infinite cluster, is determined by a single parameter: the 
correlation length L [20]~ When P0 + P0c the correlation length diverges according to the 
power law 

L N (Po - -  Po~-L (13)  

where v is the critical index for the correlation length. 

The existence of a correlation length in the system implies that the saturation can be 
written as a function of distance [21]: 

S (r) = S (&l) [ [r/L (N0)], (14)  

where  t h e  d i m e n s i o n l e s s  f u n c t i o n  f ( r / L )  + 1 when r / L  + =. 

Near  t h e  b reakdown p o i n t  ( c o r r e s p o n d i n g  t o  t h e  p e r c o l a t i o n  t h r e s h o l d )  t h e  c o r r e l a t i o n  
l e n g t h  L i s  l a r g e  and t h e r e  e x i s t s  a r e g i o n  o f  r s a t i s f y i n g  t h e  i n e q u a l i t y  s ~ r ~ L in  
which  t h e  s a t u r a t i o n  s h o u l d  n o t  depend  on t h e  s m a l l  q u a n t i t y  (P0 - P0c)  ( h e r e  s i s  t h e  m i n i -  
mum dimension in the system), 

Because Sp ~ (p0-P0c)$ and L ~ (Po - Poc) -~ when r/L ~ i, we must have f(r/L) ~ (r/L)-~/v. 
Hence over distances less than the correlation length the saturation falls off with distance 
as the power law 

Sp (0 '~" r-~/v for l ~ r < L :  (15)  

For small Sp the function ~(Sp) can be approximated by the power law 

S p * - - S p ~  ' (16 )  
% 

where  A i s  a c o n s t a n t  o f  o r d e r  u n i t y ,  S p r e s  i s  t h e  r e s i d u a l  o i l  s a t u r a t i o n ,  and Sp* i s  t h e  
maximum p o s s i b l e  v a l u e  o f  t h e  s a t u r a t i o n  by t h e  n o n w e t t i n g  p h a s e .  

N o t i n g  t h a t  Sp in  (15)  can be r e p l a c e d  by (Sp - S p r e s ) / ( S p *  - S p r e s )  and s u b s t i t u t i n g  

i t  i n t o  ( 1 6 ) ,  we o b t a i n  r as  a f u n c t i o n  o f  r 

r  " r  -~  (17)  

where 8 = n~/v. 

Equation (i0) for the nonwetting phase can be written in the form 

OSp D O [raS-lIO OSp ] (18)  

Ot - -  rd~ -1 Or [ j O r  ' 
where  d ~ k / ( v ~ m ) .  

For  t h e  s e c o n d  c a s e ,  where  t h e  s a t u r a t i o n  by t h e  w e t t i n g  p h a s e  S w i s  s m a l l ,  a l l  o f  t h e  
p r e c e d i n g  d i s c u s s i o n  r e m a i n s  in  f o r c e  i f  we i n t r o d u c e  t h e  new v a r i a b l e s  S w = 1 - sp  ( t h e  p r o b -  
a b i l i t y  t h a t  a bond b e l o n g s  t o  t h e  aqueous  i n f i n i t e  c l u s t e r )  and p = 1 - P0 ( t h e  p r o b a b i l i t y  
t h a t  a bond b e l o n g i n g  t o  p o r e s  f i l l e d  by t h e  w e t t i n g  p h a s e  i s  c o n d u c t i n g ) .  I n  t h i s  c a s e  

r can  be a p p r o x i m a t e d  as  

r : A1 S ~ - - S w r e s ]  " 

Repeating the above discussion, we obtain a differential equation for S w 
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0 ~  = Da 0 [rdS-l-o, 0Sr162 ] (19) 
Ot r dy-1 Or [ j0r ' 

where 011 = n l ~ l / v l ,  Sw = (Sw - Swres)/(Sw* - Swres) ,  Swres i s  the  r e s i d u a l  s a t u r a t i o n  by the  
we t t i ng  phase and Sw* i s  t he  maximum p o s s i b l e  va lue  of  t he  s a t u r a t i o n  by t h e  w e t t i n g  phase.  

Equat ions of  t h e  type  (18) ,  (19) wi th  d i f f u s i o n  c o e f f i c i e n t s  dependent  upon d i s t a n c e  
have been encoun te red  e a r l i e r  in t h e  s tudy  of  d i f f u s i o n  in a f r a c t a l ,  in a p e r c o l a t i o n  
c l u s t e r  [22, 9] ,  and in t u r b u l e v t  media [23, 24].  The source  f u n c t i o n ,  t he  mean-square  d i s -  
p lacement ,  and the  p r o b a b i l i t y  t h a t  a p a r t i c l e  i s  a t  t he  i n i t i a l  l a t t i c e  po in t  were found in 
[22, 23]. 

We de te rmine  the  s o l u t i o n  of  (19) .  We i n t r o d u c e  the  s e l f - s i m i l a r  v a r i a b l e  
ri+o~ 

~1 = (2 + Oa)* D~t (20 )  

and assume a solution in the self-similar form ~w = f(n) with the following initial and 
boundary conditions: 

Sw01, 0 ) = 0 ;  Sw(0, t ) =  1; ~Sw(1, t ) = 0 .  (21) 

In terms of the new variables (19) becomes 

- t  O' Sw 
0~]-----T + 1 +  

Let ~ = OSw/aq. Then (22) t akes  t h e  form 

o-%-+( 
The s o l u t i o n  o f  (23) i s  

d~ 
(2 + O0 B 

Ogw 
= o. ( 2 2 )  

Integrating (24), we obtain 

d] ) ~ = 0. (23) 
1 + (2 + 0~) 

OSw _al/(~+o, ) (24) ~ = - ~ - = C ,  exp(--~) 

1 

Sw---- Ca .( exp (-- ~1) ~l-d/~2+~ + C~. (25) 

We find from the boundary conditions (21) 
1 

Ca = 0, C a = [ i  exp (-- ~) ~-dl/(2+~ [? (1 - -  dr/(2 + 01), I] -1, 
X 0 

where ~(a, x) = f exp(-t)ta-ldt is the incomplete gamma function [25]. 

The final solution can be written as 
! 

Sw = Swms ~ S~ - -  Swres S exp (-- ~) ~-d]/(2+O,)d~. ( 26 ) 
(1 - -  dll(2 + 0 O, 1) 

The initial and boundary conditions for (18) will be 

Sp!(B, 0 ) =  1; Sp~0, t ) =  0; Sp(1, t ) =  I, (27) 
where 

S~--Spres 
S P= Sp* Spr6 s 

Then the final expression for the solution is 

Sp = S p ~  ~ (1 - -  d]/(2 + 9), 1) .[ exp (-- ~) ~-d/(~+e)d~. (28) 
0 

The s o l u t i o n  (26) ,  (28) g e n e r a l i z e s  t he  e x p r e s s i o n s  ob ta ined  e a r l i e r  in [26] f o r  the  model 
of  c a p i l l a r y  permeat ion  in t he  one -d imens iona l  case .  

CONCLUSIONS 

1. We have obtained the equations of multiphase filtration and motion of the impurities 
in a homogeneous liquid for the case when the void space is a fractal with the Hausdorff- 
Besikovitchdimensionality df embedded in a continuous medium with dimensionality d. 
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2. We have presented a model of capillary permeation of porous materials with percola- 
tion properties and its solution. 

NOTATION 

df, Hausdorff-Besikovitch dimensionality; Sw, S n, saturations of the porous material by 
the wetting and nonwetting phases; Pw, density of water; qf, radial component of the flux; 

df 4 
d~ , Hausdorff measure of a space with dimensionality df; d~ , Hausdorff dimensionality 
of a cross section of the fractal by a sphere of radius r; f1(Sw), f2(Sw), relative phase 
permeabilities; p0(Sw), capillary pressure; m, porosity of the sample; k, absolute perme- 
ability of the sample; ~, ~, critical indices; L, correlation length. 
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